Non-asymptotic adaptive prediction in functional linear models

نویسندگان

  • Élodie Brunel
  • André Mas
  • Angelina Roche
چکیده

Functional linear regression has recently attracted considerable interest. Many works focus on asymptotic inference. In this paper we consider in a non asymptotic framework a simple estimation procedure based on functional Principal Regression. It revolves in the minimization of a least square contrast coupled with a classical projection on the space spanned by the m first empirical eigenvectors of the covariance operator of the functional sample. The novelty of our approach is to select automatically the crucial dimension m by minimization of a penalized least square contrast. Our method is based on model selection tools. Yet, since this kind of methods consists usually in projecting onto known non-random spaces, we need to adapt it to empirical eigenbasis made of data-dependent – hence random – vectors. The resulting estimator is fully adaptive and is shown to verify an oracle inequality for the risk associated to the prediction error and to attain optimal minimax rates of convergence over a certain class of ellipsoids. Our strategy of model selection is finally compared numerically with cross-validation. AMS subject classification: Primary, 62J05; Secondary, 62G08.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system

Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

TESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS

In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...

متن کامل

Single-Vehicle Run-Off-Road Crash Prediction Model Associated with Pavement Characteristics

This study aims to evaluate the impact of pavement physical characteristics on the frequency of single-vehicle run-off-road (ROR) crashes in two-lane separated rural highways. In order to achieve this goal and to introduce the most accurate crash prediction model (CPM), authors have tried to develop generalized linear models, including the Poisson regression (PR), negative binomial regression (...

متن کامل

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2016